What properties should
asymmetric quorum
systems satisfy?

Juan Villacis
University of Bern

Failures

In distributed systems, failures are inevitable

Network errors
Software bugs
Malicious participants
Machine crashes

Threshold Assumptions

OCO00OOO0OOO

N P(0cesses

Threshold Assumptions Coc(eéf

%
66@5@@@@@

\ FO\UH—"I

N P(ocesses

Threshold Assumptions cocre a8

Q%@Q

\ \\ FO\U\W

N P(ocesses

aﬁump’riont & modt Processes afe Fow*k’

Symmetric Generalized Assumptions

OCO00OOO0OOO

shoced,
by
C\IEf\(OY\Q
/1

(

Define séts o processes Pl ool nat fal '}oﬁeﬂ\er (oK. a ﬂuorumg)

Symmetric Generalized Assumptions
shaced,

O0O0O0OO0OO
Q\k — w

Quomm /\ eve (\(one.
3

(

Define séts o processes Pl ool nat fal ‘]’oﬁe,'ﬂ'\e(‘ (oK. a ﬁuorumg)

Symmetric Generalized Assumptions

000000000

Quorum /\ &OWW\ 2

shaced,
b

C\:e(\(or\e
/1

(

DCFW\Q sels of processes Phd droold\ nal fal J(oﬁeﬂ\er (o\,\(,o\ ﬁuorumg

Symmetric Generalized Assumptions

ODO0O0OOO00O 0
Q\QM/—‘/% 5»\@;0\

Quorum /\ &JOWW\ 2

Define séts o processes Pl ool nat fal '}oﬁeﬁ'\er (oK. a ﬁuorumg)

Symmetric Generalized Assumptions

DGF ine sals oF processes Pl dhoold el Gl Jrogeﬂ\er Co\,\(,o\ 1uorumg)

Symmetric Generalized Assumptions
shoced,

OO00OO0O00OO0
O\k—/ s

Quorum /\ C\IG(‘(OY\Q
=

(

D@F ine sals oF processes Pl dhoold nal Gl ']'ogeﬂ\ef‘ (o\,\(,o\ cxuorumg

stumPJrson: d.\— \80&51— one O\UOCUYY\ \f\as NO Qm\'\'\\ FCOCQSSQS

Trust is Subjective

Threshold and symmetric failure assumptions = shared by everyone
In reality not everybody trusts the same entities

Each process should be able to determine who it trusts independently

Asymmetric Generalized Assumptions

OO0O00OOO0OOO

Eaa\«\ ?rocess Aetines do own quoruns

Asymmetric Generalized Assumptions

COO0OOOOO0

|
Quorum/\ o P/\ Quorom 2 & P

Eaa\f\ PFOCﬁSS AQF\V\QS \)‘S OWN C\Uo(umg

Asymmetric Generalized Assumptions

QQQQQQQOQ
W

Quorum 202

Quoom 1 oF P%

Eaa\«\ ?rocess Aetines do own quoruns

Asymmetric Generalized Assumptions

QQOQQOOQQ
R A

Qouorum = oF P/\ QUO\FUW\ 2 oF PZ

Quorum /\ OR: P/\ QUO(‘UW\/I oF Y2~

Eaa\'\ ?(‘ 0cesS Aeg’mes '*S OWN C\Uo(umg

Asymmetric Generalized Assumptions

Quorum < OE P/\ QUOTUW\ 2 oF ¢2

Quorum /\ O? P/\ Quomm/l oF P2

Eaa\'\ ?('OC.QSS AQF’W\QS *S OwWnNn C\Uo(umg

assumF’rion: € 1 defined Wy quoroms cocrectly, df o one o
Yy c‘uomms has no G@[h(Ffocesses

Asymmetric Generalized Assumptions

000000000

|
Quorum/\ o P/\ Quorom 2 & P
L—> SOC)A C\uowvv\

Eaa\'\ ?('OC.€§§ AQF’W\QS \3‘3 OwWnNn C\Uo(umg

o\ssumpjrion: € 1 defined Wy quooes cocrectly, df o one o
Yy c‘uomms has no GQUH\(FfOCQSSCS

Asymmetric Generalized Assumptions

ceepoede?

o 02
Quorum 1 of P2 /_\\j \/r—_\ Quorym 2
o guok

0\VOTUM

Eaa\'\ ?('OC.€§§ AQF’W\QS \3‘3 OwWnNn C\Uo(umg
\ c\ef_-meé\ YY\“\ C\UONMS col VQCﬂ"\ E c'{\— leos'l' ane. OF

mption: it
QSSV F m\k qUOﬂ)W\S hdS Nno Gaul"l-kl F(OCQSSQS

Secure Protocols with Asymmetric Trust

Ivan Damgard!, Yvo Desmedt?, Matthias Fitzi®, and Jesper Buus Nielsen'

1 Aarhus University, Dept. of Computer Science, 8200 Aarhus N, Denmark
{ivan,buus}(at)daimi.au.dk

2 University College London, Dept. of Computer Science, London WC1E 6BT,
United Kingdom
y.desmedt(at)cs.ucl.ac.uk

3 ETH Ziirich, Dept. of Computer Science, 8092 Ziirich, Switzerland
fitzi(at)inf.ethz.ch

Asymmetric Distributed Trust!

Orestis Alpos®? Christian Cachin?
University of Bern & Common Prefix University of Bern
oralpos@gmail.com christian.cachin@unibe.ch

Bjorn Tackmann® Luca Zanolini*

DFINITY Ethereum Foundation
bjoern@dfinity.org luca.zanolini@ethereum.org

3 May 2024

o Heterogeneous Paxos: Technical Report
Stellar Consensus by Instantiation e Shoff

Max Planck Institute for Software Systems, Campus E1 5, Room 531, 66121 Saarbriicken, Germany
https://IsaacSheff.com

Giuliano Losa* Eli Gafni' isheff@mpi-sws.org
Galois, Inc. UCLA Xinwen Wang
. . . . Cornell University, Gates Hall, 107 Hoy Road, Ithaca, New York, 14853, USA
giuliano@galois.com eli@ucla.edu https://www.cs.cornell. edu/~xinwen/
t xinwen@cs.cornell.edu
David Mazieres Robbert van Renesse
Cornell University, 433 Gates Hall, 107 Hoy Road, Ithaca, New York, 14853, USA
Stanford https://www.cs.cornell.edu/home/rvr/
http://www.scs.stanford.edu/~dm/addr/ rvr@cs.corell.edu
Andrew C. Myers
Cornell University, 428 Gates Hall, 107 Hoy Road, Ithaca, New York, 14853, USA
AuguSt 127 2019 https://www.cs.cornell.edu/andru/

andru@cs.cornell.edu

Quorum Subsumption for Heterogeneous Quorum
Systems

Xiao Li &=

University of California, Riverside, CA, USA

Eric Chan =&
University of California, Riverside, CA, USA

Mohsen Lesani &
University of California, Riverside, CA, USA

Asymmetric Trust in the Wild

{X} XRP LEDGER % Stellar

Model

Set of processes P
Each process knows the quorums of all members of P
Asynchronous communication

Byzantine faults

Asymmetric Trust

Processes are not correct/faulty anymore
Based on how accurate their trust assumptions, they can be classified as

e Faulty: if P Feulfy
If Pi s (_orccc)(and a“
o Wiserif P Coccect and a+ \eo\s"_ one qbomm \f\aﬁ no Fau\’w Processes

o\uo(‘UYY\S \f\QVQ Fau\'\—‘1 P(Ocesses

Symmetric vs Asymmetric Trust

Symmetric Reliable Broadcast Asymmetric Reliable Broadcast
e Consistency: if a correct process o Consistency: if a wise process
delivers m and another correct delivers m and another wise

process delivers m’ then m=m’ process delivers m’ then m=m’

e Validity: if broadcaster is correct

then all correct processes will e Validity: if broadcaster is correct
deliver its value then all processes that have
L_/ suf_ficier_1tly good quorums will
o L)e deliver its value
S Pec(F(eO\

lﬁer

What properties should
asymmetric quorum
systems satisfy?

University of Bern

Properties: Symmetric Quorums

Consistency Availability

O
6.2 5° o
0O O
O O O

Quorvws ‘m"'e-“ej W A’l’ \eaST on< qUOVUM \f\as

o corred process o Faw\’u\ processes

Properties: Asymmetric Quorums

Consistency and availability
But we need more

Asymmetric quorum consistency and availability are not enough to solve reliable
broadcast and consensus [LCL23]

Guilds [ACTZ24]

Set of correct processes that contains a quorum for each member

QQUOoY Vv

Guilds [ACTZ24]

Set of correct processes that contains a quorum for each member

\
\

©00000000
BN

QQUOoYv vV v\,

Guilds [ACTZ24]

Set of correct processes that contains a quorum for each member
QQUov vV v\

S AN
0:.000000 00

\

Guilds [ACTZ24]

Set of correct processes that contains a quorum for each member

Guilds [ACTZ24]

Set of correct processes that contains a quorum for each member

QQuov v v\,

Guilds [ACTZ24]

Set of correct processes that contains a quorum for each member

\

QQQOOOQOO

\ bU\ \

Guilds [ACTZ24]

The reliable broadcast and consensus algorithms of [ACTZ24] only work in
executions that contain a guild

Guilds in Reliable Broadcast

Validity: if a correct process broadcasts a message then all processes in a guild
will deliver the message

Totality: if a wise process delivers some message then all processes in a guild
will deliver a message

Guilds in Other Models

[LGM19] use consensus clusters

[LCL23] use strong availability

Guilds are too Strong

Guilds are too Strong

If there is at least one guild we can build a symmetric quorum system from the
asymmetric quorum system [ACV25]

No process will be worse off by using this symmetric version as its quorum system

So processes can derive the symmetric quorum system and use normal
symmetric algorithms

()\,\\é\ — Sx\mw\ﬁsﬂ\c TWS(

Building a Symmetric Quorum System

|dea: treat each possible guild as a quorum

What is a possible guild?

P\ 5‘& oF PFOCQSSQS -t\'\ik S a Su:\A\

" Some execf('(on

Building a Symmetric Quorum System

|dea: treat each possible guild as a quorum

What is a possible guild?

P\ S‘A oF Pf‘OCeSSQS‘ 't\'\ik S a Su:\A\

W Some execJ‘ﬁ on

New symmetric quorum system = set of all possible guilds

@ — { 8u1\a\q, 3\1“\0\1, o 30%‘0\m3

Building a Symmetric Quorum System

<> there is an exponential number of possible guilds, the new asymmetric
quorum system is huge

Building a Symmetric Quorum System

<> there is an exponential number of possible guilds, the new asymmetric
quorum system is huge

<. we don’t need to ‘build’ the new quorum system, we just need to recognize its
‘quorums’ (i.e. guilds)

i m O.
upon receiving messages From dll process some c‘ocm A

we V\eeo\JVO J

(ecognize F we have
(eceved Messages From
O quo(‘UW\

Recognizing Guilds Efficiently

Given a set of processes S
For each member: check if at least one of its quorums is a subset of S

If yes, then S is a guild in the execution where all members of S are not faulty

Asymmetric Trust in the Crash-fault Model

[SC25a] show that in the asynchronous crash-fault model, asymmetric trust
reduces to symmetric trust

Derive a valid symmetric quorum system from the asymmetric one, keeping the
same guarantees for all processes

It makes no sense to use asymmetric trust in the crash-fault scenario

Current Situation

All known algorithms for reliable broadcast and consensus only work if the
execution has a guild

Guild = symmetric trust

Status: it makes no sense to use asymmetric trust in the Byzantine-fault scenario if
you require guilds

Goal: is it possible to solve asymmetric reliable broadcast and consensus without
guilds

How to Proceed?

Guilds: X are too strong!
Consistency and availability:) are too weak!

We need properties that are neither too weak nor too strong

Weaker Assumptions for Asymmetric Trust

Ignacio Amores-Sesar!, Christian Cachin?, and Juan Villacis?

! Aarhus University, Denmark
*University of Bern, Switzerland

Messages Needed in an Algorithm

send <start>

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>

Messages Needed in an Algorithm
LF’\V\‘\S\'\7

send <start> Q

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>

Messages Needed in an Algorithm

send <start>

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>

gec)\o>

LF"W‘ 5\'\ 7

O

\

geéi\o>

(CC\N»

[e

Messages Needed in an Algorithm

send <start>

upon quorum of <start>

send <echo> ng—b 43“1‘*7

upon quorum of <echo>
send <finish>

Messages Needed in an Algorithm

send <start>

upon quorum of <start>

send <echo> ng—b 43“1‘*7

upon quorum of <echo>
send <finish>

Messages Needed in an Algorithm

send <start>

upon quorum of <start>

send <echo> ng—b 43‘4‘*7

upon quorum of <echo>
send <finish>

R@o\uxcemevﬁi 2 \(\5 okvoruws oF 2N c\uomm 5\(\0\)\3\ SQJ\C}\ <S+&“+7

Messages Needed in an Algorithm

send <start>

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>

Messages Needed in an Algorithm

send <start>

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>

Depth of a Process

e A process has depth O if it is correct
e Furthermore, a process has depth d if it is correct and it has a quorum
such that all its members have depth = d-1

We focus only on the maximal depth of a process

Messages Needed in an Algorithm

send <start>

upon quorum of <start>

send <echo> ng—b 43“1‘*7

upon quorum of <echo>
send <finish>

Depth of a Process

O O O

@\y

Q"0 0@ O

Q

o0 0

Depth of a Process

N1 O O Q A\\ vo(m$ \(\ave

o« 4
/ X \eadl one Fastty
e(oc6S5

®@ "0 0 O

Dega=0 (nave)

O O O

Depth of a Process

Ruocom | O @ @ @
o

QUO(‘UW\ 1

© 0 O

Depth of a Process Aeghs £ S

Q(‘oce sseS
nye

O/

aUO(‘Um 1

© 0 O

Depth of a Process

OM (\\)0(\\(‘(\ UJ\‘\Q(Q

O @ @ @ ol glocess

G
/ ol Aq}(\!\ 2.0
@

QUO(‘UW\ 2

Degth = l

© 0 O

Depth of a Process

Quocom | @ @ @
/
O

QUO(‘UW\ 1

© ©

Depth of a Process

OM (\\)0(\\(‘(\ UJ\‘\Q(Q

@ O O dl grocesses

QU/ ol Ae,gj‘\‘\ 2 /l
Q

QUO(‘UW\ 1

Degn =1

© ©

Depth in the Asymmetric Model

Depth generalizes the existing classification of processes

Depth

0
1
2

Depth in the Asymmetric Model

Depth generalizes the existing classification of processes
Depth
0 ,.’—7 (\d\\le/

1
2

Depth in the Asymmetric Model

Depth generalizes the existing classification of processes
Depth
0 ,.’—7 f\d\\le/

1
2

;o,_—) 6\) \\C)\

Depth in the Asymmetric Model

Depth generalizes the existing classification of processes

W ol

Depth
K
2

L:’O — %U \\C)\

Solving Problems with Depth

We must adapt asymmetric problems to use depth

If we can solve problems for all processes with depth < « then we don’t need a
guild

Reliable Broadcast with Depth (RBI[d])

We adapt the properties of problems to use depth

Consistency: if a process with depth d delivers m and another process with depth
d delivers m’, then m=m’

Totality: if a process with depth d delivers a message, then all processes with
depth d will deliver a message

Reliable Broadcast with Depth (RBI[d])

[ACTZ24] algorithm solves RBJ[«] (i.e., for guild members)
It is not possible to solve RB[d] ford < 1

We want to solve RB[d] for the minimum possible d

Reliable Broadcast with Guilds [ACTZ24] (simplified)

Bracha broadcast with asymmetric quorums

Kernel: set of processes that intersects all my quorums

upon quorum of <ready, m>
deliver m

upon kernel of <ready, m>
send <ready, m>

Reliable Broadcast with Guilds [ACTZ24] (simplified)

Bracha broadcast with asymmetric quorums

Kernel: set of processes that intersects all my quorums

upon quorum of <ready, m> > 300(0‘,‘-}625 ha € one Sui\J\ mente

deli
eliverm 0\8\;\:@(5 m, q“ SuiM memLxe«‘S wi“ o\e\{ver‘ m

upon kernel of <ready, m>
send <ready, m>

Reliable Broadcast with Guilds [ACTZ24] (simplified)

Bracha broadcast with asymmetric quorums

Kernel: set of processes that intersects all my quorums

upon quorum of <ready, m>
deliver m

\<€N\e>\ CONVANS aJV \f’*o\sﬂk oneg

'\\ \wq S
PS5 member, 0 0

\De_ o %OOA \IG\UC

Reliable Broadcast with Guilds [ACTZ24] (simplified)

Bracha broadcast with asymmetric quorums

Kernel: set of processes that intersects all my quorums

upon quorum of <ready, m>
deliver m \p\l\({\' \(\O\\QQ@—“S when

Maece 18 0O 3\’ ‘\CM
upon kernel of <ready, m>
send <ready, m>

Reliable Broadcast with Guilds [ACTZ24] (simplified)

Bracha broadcast with asymmetric quorums

Kernel: set of processes that intersects all my quorums

upon quorum of <ready, m> YY\qliC\'OJS \O(OCE’SSeS
deliver m con +eiek a pCocess
with Aep‘k\'\ O

upon kernel of <ready, m>
send <ready, m>

Kernel

Reliable Broadcast with Guilds [ACTZ24] (simplified)

Bracha broadcast with asymmetric quorums

Kernel: set of processes that intersects all my quorums

h:
upon quorum of <ready, m> ad this aan
deliver m leod foO

'H‘icKiV\f) a o\eﬁl l'\

upon kernel of <ready, m> 1 process

send <ready, m>

Reliable Broadcast with Guilds [ACTZ24] (simplified)
and\ cortinue

Bracha broadcast with asymmetric quorums 0 “_\
\
Kernel: set of processes that intersects all my quorums / Kernel ‘\’NM‘N) a
o dept W

process

upon quorum of <ready, m>
deliver m

upon kernel of <ready, m>
send <ready, m>

An Algorithm for RB[3]

upon quorum of <ready, m>
deliver m

upon kernel of <ready, m>
send <ready-extra, m>

upon quorum of <ready-extra, m>
send <ready, m>

An Algorithm for RB[3]

upon quorum of <ready, m>
deliver m

upon kernel of <ready, m>
send <ready-extra, m>

upon quorum of <ready-extra, m>
send <ready, m>

mo\'\C\OU$
COoX\ s)('\\\)T('\C\k 4N

0 ?(oc,ass

e(o cesses

degth

Kernel

An Algorithm for RB[3]

upon quorum of <ready, m>
deliver m

upon kernel of <ready, m>
send <ready-extra, m>

upon quorum of <ready-extra, m>
send <ready, m>

An Algorithm for RBJ[3] B\ querum wlersection,

C,M{\’ he QOW\QOSQC}\ DY\\W
upon quorum of <ready, m> \O\’\ g\;(o(_esses Wit é\e@\" O

deliver m

upon kernel of <ready, m>
send <ready-extra, m>

upon quorum of <ready-extra, m>
send <ready, m>

An Algorithm for RB[3]

We propose an algorithm that solves RB[3]
This reduces assumptions strength from depth « to depth 3

Open question: is there an algorithm for RB[2]?

Consensus with Depth

Does consensus have bounded depth?

Main challenge: consensus can have executions with infinite length

Consensus with Depth

If consensus has infinite depth:

e Doesn't make sense to solve consensus in the asymmetric trust model (use
equivalent symmetric algorithms instead)

If depth of consensus is bounded:

e An interesting algorithm
e Makes sense to use asymmetric trust for consensus

Conclusions

Guild assumptions are so strong that asymmetric trust becomes unnecessary
We propose using depth to characterize asymmetric problems

We solve reliable broadcast with weaker assumptions

RB[~] — RB[3]

Future Work

Consensus with bounded depth

Determine the minimum depths that allow to solve reliable broadcast and
eventually consensus

Do other asymmetric models suffer a similar guild effect?

References

[ABY22]

[ACTZ24]

[ACV25]
[LCL23]

[MR98]

[SC25a]
[SC25b]

[Z23]

Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure asynchronous
binary agreement via binding crusader agreement. In PODC 2022.

Alpos, O., Cachin, C., Tackmann, B., & Zanolini, L. Asymmetric distributed trust. Distributed Computing,
37(3), 247-277.

Amores-Sesar, |., Cachin, C., & Villacis, J. Weaker Assumptions for Asymmetric Trust.
Li, X., Chan, E., & Lesani, M. Quorum subsumption for heterogeneous quorum systems. In DISC 2023.
Malkhi, D., & Reiter, M. Byzantine quorum systems. Distributed computing, 11(4), 203-213.

Senn, M., & Cachin, C. Asymmetric Failure Assumptions for Reliable Distributed Systems. In PaPOC
2025.

Senn, M., & Cachin, C. Asymmetric Grid Quorum Systems for Heterogeneous Processes.

Zanolini, L. Asymmetric Trust in Distributed Systems. PhD Thesis

