
What properties should
asymmetric quorum
systems satisfy?

Juan Villacis
University of Bern



Failures

In distributed systems, failures are inevitable

● Network errors
● Software bugs
● Malicious participants
● Machine crashes



Threshold Assumptions







Symmetric Generalized Assumptions



Symmetric Generalized Assumptions



Symmetric Generalized Assumptions



Symmetric Generalized Assumptions







Trust is Subjective

Threshold and symmetric failure assumptions = shared by everyone

In reality not everybody trusts the same entities

Each process should be able to determine who it trusts independently



Asymmetric Generalized Assumptions



Asymmetric Generalized Assumptions



Asymmetric Generalized Assumptions

















Asymmetric Trust in the Wild



Model

Set of processes P

Each process knows the quorums of all members of P

Asynchronous communication

Byzantine faults



Asymmetric Trust

Processes are not correct/faulty anymore

Based on how accurate their trust assumptions, they can be classified as

● Faulty: if
● Naive: if
● Wise: if









Properties: Asymmetric Quorums

Consistency and availability

But we need more

Asymmetric quorum consistency and availability are not enough to solve reliable
broadcast and consensus [LCL23]















Guilds [ACTZ24]

The reliable broadcast and consensus algorithms of [ACTZ24] only work in
executions that contain a guild



Guilds in Reliable Broadcast

Validity: if a correct process broadcasts a message then all processes in a guild
will deliver the message

Totality: if a wise process delivers some message then all processes in a guild
will deliver a message



Guilds in Other Models

[LGM19] use consensus clusters

[LCL23] use strong availability



Guilds are too Strong



Guilds are too Strong

If there is at least one guild we can build a symmetric quorum system from the
asymmetric quorum system [ACV25]

No process will be worse off by using this symmetric version as its quorum system

So processes can derive the symmetric quorum system and use normal
symmetric algorithms



Building a Symmetric Quorum System

Idea: treat each possible guild as a quorum

What is a possible guild?

New symmetric quorum system = set of all possible guilds



Building a Symmetric Quorum System

Idea: treat each possible guild as a quorum

What is a possible guild?

New symmetric quorum system = set of all possible guilds



Building a Symmetric Quorum System

: there is an exponential number of possible guilds, the new asymmetric
quorum system is huge



Building a Symmetric Quorum System

: there is an exponential number of possible guilds, the new asymmetric
quorum system is huge

: we don’t need to ‘build’ the new quorum system, we just need to recognize its
‘quorums’ (i.e. guilds)





Asymmetric Trust in the Crash-fault Model

[SC25a] show that in the asynchronous crash-fault model, asymmetric trust
reduces to symmetric trust

Derive a valid symmetric quorum system from the asymmetric one, keeping the
same guarantees for all processes

It makes no sense to use asymmetric trust in the crash-fault scenario



Current Situation

All known algorithms for reliable broadcast and consensus only work if the
execution has a guild

Guild⇒ symmetric trust

Status: it makes no sense to use asymmetric trust in the Byzantine-fault scenario if
you require guilds

Goal: is it possible to solve asymmetric reliable broadcast and consensus without
guilds



How to Proceed?

Guilds: are too strong!

Consistency and availability: are too weak!

We need properties that are neither too weak nor too strong





Messages Needed in an Algorithm

send <start>

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>













Messages Needed in an Algorithm

send <start>

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>



Messages Needed in an Algorithm

send <start>

upon quorum of <start>
send <echo>

upon quorum of <echo>
send <finish>



Depth of a Process

● A process has depth 0 if it is correct
● Furthermore, a process has depth d if it is correct and it has a quorum

such that all its members have depth ≥ d-1

We focus only on the maximal depth of a process



















Depth in the Asymmetric Model

Depth generalizes the existing classification of processes

Depth

0
1
2
.
.
.
∞



Depth in the Asymmetric Model

Depth generalizes the existing classification of processes

Depth

0
1
2
.
.
.
∞



Depth in the Asymmetric Model

Depth generalizes the existing classification of processes

Depth

0
1
2
.
.
.
∞



Depth in the Asymmetric Model

Depth generalizes the existing classification of processes

Depth

0
1
2
.
.
.
∞



Solving Problems with Depth

We must adapt asymmetric problems to use depth

If we can solve problems for all processes with depth < ∞ then we don’t need a
guild



Reliable Broadcast with Depth (RB[d])

We adapt the properties of problems to use depth

Consistency: if a process with depth d delivers m and another process with depth
d delivers m’, then m=m’

Totality: if a process with depth d delivers a message, then all processes with
depth d will deliver a message



Reliable Broadcast with Depth (RB[d])

[ACTZ24] algorithm solves RB[∞] (i.e., for guild members)

It is not possible to solve RB[d] for d ≤ 1

We want to solve RB[d] for the minimum possible d









Reliable Broadcast with Guilds [ACTZ24] (simplified)

Bracha broadcast with asymmetric quorums

Kernel: set of processes that intersects all my quorums

…
upon quorum of <ready, m>

deliver m

upon kernel of <ready, m>
send <ready, m>

…

















An Algorithm for RB[3]

We propose an algorithm that solves RB[3]

This reduces assumptions strength from depth ∞ to depth 3

Open question: is there an algorithm for RB[2]?



Consensus with Depth

Does consensus have bounded depth?

Main challenge: consensus can have executions with infinite length



Consensus with Depth

If consensus has infinite depth:

● Doesn't make sense to solve consensus in the asymmetric trust model (use
equivalent symmetric algorithms instead)

If depth of consensus is bounded:

● An interesting algorithm
● Makes sense to use asymmetric trust for consensus



Conclusions

Guild assumptions are so strong that asymmetric trust becomes unnecessary

We propose using depth to characterize asymmetric problems

We solve reliable broadcast with weaker assumptions

RB[∞]→ RB[3]



Future Work

Consensus with bounded depth

Determine the minimum depths that allow to solve reliable broadcast and
eventually consensus

Do other asymmetric models suffer a similar guild effect?



References

[ABY22]

[ACTZ24]

[ACV25]

[LCL23]

[MR98]

[SC25a]

[SC25b]

[Z23]

Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure asynchronous
binary agreement via binding crusader agreement. In PODC 2022.

Alpos, O., Cachin, C., Tackmann, B., & Zanolini, L. Asymmetric distributed trust. Distributed Computing,
37(3), 247-277.

Amores-Sesar, I., Cachin, C., & Villacis, J. Weaker Assumptions for Asymmetric Trust.

Li, X., Chan, E., & Lesani, M. Quorum subsumption for heterogeneous quorum systems. In DISC 2023.

Malkhi, D., & Reiter, M. Byzantine quorum systems. Distributed computing, 11(4), 203-213.

Senn, M., & Cachin, C. Asymmetric Failure Assumptions for Reliable Distributed Systems. In PaPOC
2025.

Senn, M., & Cachin, C. Asymmetric Grid Quorum Systems for Heterogeneous Processes. Nnnnnnnnn
nnn

Zanolini, L. Asymmetric Trust in Distributed Systems. PhD Thesis


