
Specifying Binding
and Commitment
with Ghost Outputs
and Strong Refinement
Hagit Attiya, Technion
With: Constantin Enea, Jennifer Welch and Itay Flam

Abstraction for Distributed Protocols

Abstraction and refinement are successful tools for
specifying and verifying concurrent data structures

Less so for distributed protocols, which are often
specified by listing their properties

Part of the problem is inadequate specification tools
Suggest a path for (partially) dealing with it

Abstract /
Spec.

Concrete /
Imp.

re
fin

em
en

t

Hagit Attiya FRIDA @ DISC 2025 2

Case in Point: Crusader Agreement
[Dolev, 1982]

Hagit Attiya FRIDA @ DISC 2025 3

Crusader Agreement, More Precisely
[Abraham, Ben-David, Yandamuri, 2022]

0 1Ʇ

A process starts at one of the end vertexes and decides on a vertex, s.t.
1. If all start at the same vertex  decide on this vertex (validity)
2. Decided vertexes are adjacent (agreement)

[Attiya, Welch, 2023]

Hagit Attiya FRIDA @ DISC 2025 4

Crusader Agreement in Randomized
Consensus (Simplified)

Crusader
Agreement

Common
Coin

Crusader
Agreement

Common
Coin

⊥

v

=v? …

…

Hagit Attiya FRIDA @ DISC 2025 5

Adaptive adversary can exploit the uncertainty to prohibit termination

Crusader
Agreement

Common
Coin

Crusader
Agreement

Common
Coin

⊥

v

=v?

Crusader Agreement in Randomized
Consensus: What Could Go Wrong?

[Aguilera, Toueg, 1998]
[Mostefaoui, Moumen, and Raynal, 2014 and 2015]

…

…

Hagit Attiya FRIDA @ DISC 2025 6

Crusader Agreement Specification

Use a ghost (auxiliary) variable to capture the
non-⊥ value

Auxiliary variables (history or prophecy) are typically
added to an implementation to prove its correctness
 [Abadi, Lamport 1991] [Marcus, Pnueli AMAST 1996]

 We’ll add them to the specification, in part., its interface

indicate(i,xi)

response(i,vi)

Hagit Attiya FRIDA @ DISC 2025 7

Crusader Agreement with a Ghost Output

• _v is the same in all responses
• _v is the input of some correct process
• If vi <> ⊥ then vi = _v

indicate(i,xi)

response(i,vi ,_v)

indicate(i,xi)

response(i,vi)

Hagit Attiya FRIDA @ DISC 2025 8

Crusader Agreement with a Ghost Output

• _v is the same in all responses
• _v is the input of some correct process
• If vi <> ⊥ then vi = _v

Hides a non-deterministic choice of
the ghost output

indicate(i,xi)
w/o prior ⊥ resp.

non-det trans

indicate(i,xi)

response(i,vi)

Hagit Attiya FRIDA @ DISC 2025 9

response(i,vi,1)

response(i,vi,0)

Crusader Agreement with a Ghost Output

• _v is the same in all responses
• _v is the input of some correct process
• If vi <> ⊥ then vi = _v

response
(i, ⊥,?)

response
(j, ⊥,?)

response
(j,0,0)

response
(k,1,1)

response
(k, ⊥,0)

Trace
Property

indicate(i,xi)

response(i,vi,_v)

Hagit Attiya FRIDA @ DISC 2025 10

Crusader Agreement with a Ghost Output

In a CA implementation,
_v might be determined by the future,
i.e., it is a prophecy variable

response
(j,⊥,0)

response
(j,⊥,1)

response
(j,⊥,1)

response
(j,0,0)

response
(k,1,1)

response
(k,⊥,0)

Trace
Property

Hagit Attiya FRIDA @ DISC 2025 11

indicate(i, xi)

response(i,vi,1)

response(i,vi,0)

Binding Crusader Agreement

Same non-⊥ value is decided in all extensions
after the first correct process returns

Adversary cannot bias the response
Not a trace property

response
(i,⊥,?)

response
(j,⊥,?)

response
(j,1,1)

response
(k,1,1)

response
(k,⊥,1)

[Abraham, Ben-David, Yandamuri, 2022][Attiya, Welch, 2023]

Trace
PropertyX

Hagit Attiya FRIDA @ DISC 2025 12

indicate(i,xi)

response(i,vi,_v)

Binding Crusader Agreement

Same non-⊥ value is decided in all extensions
after the first correct process returns

response
(i,⊥,1)

response
(j,⊥,1)

response
(j,1,1)

response
(k,1,1)

response
(k,⊥,1)

Hyper
Property

Hagit Attiya FRIDA @ DISC 2025 13

indicate(i,xi)

response(i,vi,_v)

Implementing the CA Specification

Refine the CA specification by relating states
of the abstract and concrete objects

Forward simulations rely only on history leading to the current state

as2∃
Sim

cs1

as1

cs2

Forward

Sim

Hagit Attiya FRIDA @ DISC 2025 14

indicate(i,xi)

response(i,vi,_v)

Implementing the CA Specification

Refine the CA specification by relating states
of the abstract and concrete objects

Backward simulations are prophecies that determinize the future
Refinement can be proved by forward & backward simulation

as1∃

cs1 cs2

as2

Sim

Backward

Sim

as2∃
Sim

cs1

as1

cs2

Forward

Sim

[Lynch, Vaandrager][Jonsson]

Hagit Attiya FRIDA @ DISC 2025 15

indicate(i,xi)

response(i,vi,_v)

Binding CA and Strong Refinement

A crusader agreement implementation is binding
if it is a strong refinement of the specification

≡Forward Simulation from the implementation to the specification
_v is a history variable (no non-determinism)

Obj ≤s Spec iff ∀ program P, ∀ deterministic scheduler S1 of P X Obj,
 ∃ deterministic scheduler S2 of P X Spec,
 Traces(P X Obj X S1) = Traces(P X Spec X S2)

[Attiya, Enea, DISC 2019]

Hagit Attiya FRIDA @ DISC 2025 16

response(i,vi,1)

response(i,vi,0)

X

Another Example: Gather
Implicit in [Canetti, Rabin 1993]
[Abraham, Jovanovic, Maller, Meiklejohn, Stern, and Tomescu 2021]

CORE

Hagit Attiya FRIDA @ DISC 2025 17

For process k, and every pair of nonfaulty processes i and j,
if (k,xi) is in Si and (k,xj) is in Sj, then xi = xj

For every pair of correct processes i and j,
if (j,x) is in Si, then x = xj

• For every correct process, Si ⊇ _SC

• |_SC| ≥ n − f |Si| ≥ n − f

Gather with a Ghost Output

Si Sj

Sk

_SC

indicate(i, xi)

response(i,Si,_SC)

Hagit Attiya FRIDA @ DISC 2025 18

Common Core

there is a set of n-f processes, whose values
appear in the set of every correct process

response
(i,{0,0,1,1},?)

response
(j,{0,0,1,1},?)

response
(j,{0,0,1,_},?)

response
(k,{_,0,1,1},?)

response
(k,{0,0,1,1},?)n = 4, f = 1

Trace
Property

Hagit Attiya FRIDA @ DISC 2025 19

indicate(i, xi)

response(i,Si,_SC)

Common Core

there is a set of n-f processes, whose values
appear in the set of every correct process

response
(i,{0,0,1,1},?)

response
(j,{0,0,1,1},{_,0,1,1})

response
(j,{0,0,1,_},{0,0,1,_})

response
(k,{_,0,1,1},{_,0,1,1})

response
(k,{0,0,1,1},{0,0,1,_})

Trace
Property

Hagit Attiya FRIDA @ DISC 2025 20

indicate(i, xi)

response(i,Si,_SC)

Common Core

there is a set of n-f processes, whose values
appear in the set of every correct process

response
(i,{0,0,1,1},{0,0,1,_})

response
(j,{0,0,1,1},{_,0,1,1})

response
(j,{0,0,1,_},{0,0,1,_})

response
(k,{_,0,1,1},{_,0,1,1})

response
(k,{0,0,1,1},{0,0,1,_})

response
(i,{0,0,1,1},{_,0,1,1})

Trace
Property

Hagit Attiya FRIDA @ DISC 2025 21

indicate(i, xi)

response(i,Si,_SC)

Binding Common Core

When the first correct process returns
there is a set of n-f processes, whose values
appear in the set of every correct process,
in all possible extensions

response
(i,{0,0,1,1},?)

response
(j,{0,0,1,1},?)

response
(j,{_,0,1,1},?)

response
(k,{_,0,1,1},?)

response
(k,{0,0,1,1},?)

Trace
PropertyX

Hagit Attiya FRIDA @ DISC 2025 22

indicate(i, xi)

response(i,Si,_SC)

Binding Common Core

response
(j,{0,0,1,1},{_,0,1,1})

response
(j,{_,0,1,1},{_,0,1,1})

response
(k,{_,0,1,1},{_,0,1,1})

response
(k,{0,0,1,1},{_,0,1,1})

When the first correct process returns
there is a set of n-f processes, whose values
appear in the set of every correct process,
in all possible extensions

Hagit Attiya FRIDA @ DISC 2025 23

indicate(i, xi)

response(i,Si,_SC)

response
(i,{0,0,1,1}, },{_,0,1,1})Hyper

Property

Binding Gather and Strong Refinement

Implementation is binding if it is a
strong refinement of the gather module

≡Forward Simulation
_SC is a history variable

Hagit Attiya FRIDA @ DISC 2025 24

indicate(i, xi)

response(i,Si,_SC)

Crusader Agreement from Gather (code for pi)

Si ← gather(xi)

if Si contains ≥ |Si| − f copies of v

 then return v

else return ⊥

response
(i,{0,0,1,1},?)

response
(j,{0,0,1,1},{_,0,1,1})

response
(j,{0,0,1,_},{0,0,1,_})

response
(k,{_,0,1,1},{_,0,1,1})

response
(k,{0,0,1,1},{0,0,1,_})

⊥

⊥

0 0

1

n = 4, f = 1

Hagit Attiya FRIDA @ DISC 2025 25

Crusader Agreement from Gather (key lemma)

Si ← gather(xi)

if Si contains ≥ |Si| − f copies of v

 then return v

else return ⊥

This suffices since |_SC | = n − f and n > 3f
 at most one value appears |_SC | − f times in _SC
 all correct processes that return a non-⊥ value return the same value

Lemma: If a non-⊥ value v is returned by a correct process,
then v appears ≥ |_SC|-f times in the common core _SC

Hagit Attiya FRIDA @ DISC 2025 26

Crusader Agreement from Gather (key lemma)

Si ← gather(xi)

if Si contains ≥ |Si| − f copies of v

 then return v

else return ⊥

Proof of the lemma: correct process pi returns v appearing |Si|-f times in Si
Let T be Si \ _SC . |T| = |Si| - |_SC | ≤ f
Then the number of times v appears in _SC is the number of times it appears in Si
minus the number of times it appears in T, which is ≥ |Si| - f - (|Si| - |_SC |)

Lemma: If a non-⊥ value v is returned by a correct process,
then v appears ≥ |_SC|-f times in the common core _SC

Si

_SCT

Hagit Attiya FRIDA @ DISC 2025 27

Crusader Agreement from Gather: Binding

Si ← gather(xi)

if Si contains ≥ |Si| − f copies of v

 then return v

else return ⊥

 If _SC is a history variable (as ensured
by strong refinement), then CA is binding

response
(i,{0,0,1,1},{_,0,1,1})

response
(j,{0,0,1,1},{_,0,1,1})

response
(j,{_,0,1,1},{_,0,1,1})

response
(k,{_,0,1,1},{_,0,1,1})

response
(k,{0,0,1,1},{_,0,1,1})

⊥

⊥

1 1

1

Otherwise, _SC is a prophecy variable,
and CA is not binding (recall previous example)
Hagit Attiya FRIDA @ DISC 2025 28

A Glimpse of What’s Next

Commitment is a hyperproperty: a process commits to a value v (often
drawn at random), unknown to other processes
In all extensions, only v can be revealed

But what about random secret draw?

Process pi commits to a random value v, unknown to all processes

Implicitly used for a common coin in
[Canetti, Rabin 1993]

[Freitas, Kuznetsov, Tonkikh, DISC 2022]

Hagit Attiya FRIDA @ DISC 2025 29

(Single) Random Secret Draw: Ghost Output

A single process commits to a random value 𝑑𝑑 ∈ [1, … ,𝐷𝐷]

Also, ensure that 𝑑𝑑 stays secret until revealed (using non-interference)

indicate_draw(i)

response_draw(i,_𝑑𝑑)

Hagit Attiya FRIDA @ DISC 2025 30

Wrap-Up

• Binding is a hyperproperty that commits the outputs across
all extensions

• Ghost outputs can expose hidden commitments
• Strong refinement (≡ forward simulation, based only on the

history) enforces binding
• Composition preserves binding:

 E.g., gather  crusader agreement
• Future research: commitment of probabilistic distributions

Hagit Attiya FRIDA @ DISC 2025 31

THANKS!

	Specifying Binding �and Commitment �with Ghost Outputs �and Strong Refinement
	Abstraction for Distributed Protocols
	Case in Point: Crusader Agreement
	Crusader Agreement, More Precisely
	Crusader Agreement in Randomized Consensus (Simplified)
	Crusader Agreement in Randomized Consensus: What Could Go Wrong?
	Crusader Agreement Specification
	Crusader Agreement with a Ghost Output
	Crusader Agreement with a Ghost Output
	Crusader Agreement with a Ghost Output
	Crusader Agreement with a Ghost Output
	Binding Crusader Agreement
	Binding Crusader Agreement
	Implementing the CA Specification
	Implementing the CA Specification
	Binding CA and Strong Refinement
	Another Example: Gather
	Gather with a Ghost Output
	Common Core
	Common Core
	Common Core
	Binding Common Core
	Binding Common Core
	Binding Gather and Strong Refinement
	Crusader Agreement from Gather (code for pi)
	Crusader Agreement from Gather (key lemma)
	Crusader Agreement from Gather (key lemma)
	Crusader Agreement from Gather: Binding
	A Glimpse of What’s Next
	(Single) Random Secret Draw: Ghost Output
	Wrap-Up
	THANKS!

