
FRIDA Workshop, October 27th 2025

Parameterized verification
of asynchronous round-based distributed algorithms

reduced to nuXmv

Nathalie Bertrand

joint work with Pranav Ghorpade and Sasha Rubin
University of Sydney



Fault-tolerant distributed algorithms

n

f

t

• n processes
• f are faulty (e.g. crash or Byzantine failures)
• t known upper bound on f
• resilience condition between these parameters, e.g. 2t < n
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Asynchronous round-based distributed algorithms

Consensus or leader election protocols
• asynchronous communication by broadcast
• threshold guards on number of received messages
• finitely many local variables
• structured in rounds:

• rounds are identical up to round index, used to tag messages
• round increment not limited to r := r + 1

b o o l v := i n p u t v a l u e ({0 , 1} ) ;
i n t r := 1 ;
w h i l e ( t r u e ) do

broadcast (v,r) ;
w a i t f o r n − t messages ( ∗ , r ) ;
i f r e c e i v e d 2( n + t )/3 messages (w, r )
then d := w ; h a l t
e l s e i f r e c e i v e d ( n + t )/2 messages ( 0 , r )
then v := 0 ; r:=r+2 ;
e l s e i f r e c e i v e d ( n + t )/3 messages ( 1 , r )
then v := 1 ; r:=r+1 ;

od
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Existing formal methods approaches

No fully automated techniques; Mostly human-guided methods
• interactiv theorem provers

• TLA+ protocol formalization and verification for Paxos [Lamport,
Merz, Doligez 2012], multi-Paxos [Chand, Liu, Stoller 2016] and
DAG-based consensus in TLA+ [Bertrand, Ghorpade, Rubin, Scholz,
Subotić 2025]

• Rocq/VERDI specification and verification of Raft [Woos, Wilcox,
Anton, Tatlock, Ernst, Anderson 2016]

• reduction to existing tools
• restricted schedulers for randomized algorithms [Bertrand, Konnov,

Lazić, Widder 2020]
• model checking with fixed number of processes

• reduction theorem for finite instances to TLC [Chaouch-Saad,
Charron-Bost, Merz 2009]

• Paxos in SPIN [Delzanno, Tatarek, Traverso 2014]
• agreement for asynchronous consensus algorithms [Noguchi, Tsuchiya,

Kikuno 2012]
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Our approach

Challenges
• 2 sources of infinity: number of processes, number of rounds
• asynchronous communications: unbounded drift between processes

RDAs

Layered
RDAs

Finite-counter
system

Infinite-counter
system

sound and complete

reduction

sound and complete

abstraction

Off-the-shelf
verification engines:
IC3, bounded MC
interpolation, . . .

Customized
CEGAR

Previous work [Bertrand, Thomas, Widder 2021] [Thomas, Sankur 2023]

This work [Bertrand, Ghorpade, Rubin under review]

1. generalization of handled round-based distributed algorithms
2. reuse of mature model checkers e.g. nuXmv [Cavada et al. 2014]
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Outline of the rest of the talk

1 Modelling formalism: process template and history state-count logic

2 Reduction steps

3 Experimental validation
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Round-based process template

represents behaviour of a correct process
b o o l v := i n p u t v a l u e ({0 , 1} ) ;
i n t r := 1 ;
w h i l e ( t r u e ) do

broadcast (v,r) ;
w a i t f o r n − t messages ( ∗ , r ) ;
i f r e c e i v e d 2( n + t )/3 messages (w, r )
then d := w ; h a l t
e l s e i f r e c e i v e d ( n + t )/2 messages ( 0 , r )
then v := 0 ; r:=r+2 ;
e l s e i f r e c e i v e d ( n + t )/3 messages ( 1 , r )
then v := 1 ; r:=r+1 ;

od

g1 = Quorum ∧ m0 > 2(n + t)/3
g1′ = Quorum ∧ m1 > 2(n + t)/3
g2 = Quorum ∧ m0 > n + t/2
g3 = Quorum ∧ m0 ≤ n + t/2 ∧ m1 ≥ n + t/3
where Quorum = m0 + m1 ≥ n − t

: no round increment
: round increment of 1
: round increment of 2

v0 v1

d0 d1

g1
g1g1′

g1′

g3
g2 g3

g2

parameters P = {n, t}
resilience condition rc = n > 2t
locations L = {v0, v1, d0, d1}
messages M = {m0, m1}

edges w. guard and round update

broadcast associated with locations
Bcast: w0 7→ m0

w17→ m1
d0 7→⊥
d17→⊥
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Semantics

Fixed-instance semantics S(T , ν)
• ν: fixed values for parameters (n and t)
• n processes execute the same template
• configurations

• process state: current location and round index, multiset of received
messages

• network state: multiset of broadcast messages
• actions

• reception of a message by a process
• process update according to a template rule (if guard permits;

updates location and round index)
→ infinitely many finite-valued variables

(counting the processes in each location and round)

Parameterized semantics S(T ) = tν|=rcS(T , ν)
→ infinitely many unbounded variables
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History State-Count Logic

ψ ::= ∀r . αr | β | ¬ψ | ψ ∧ ψ

round-local atom αr ::=
∑
`∈L c` · κ(`, r) ≤ ϕ(n, t)

cumulative atom β ::=
∑
`∈X c` ·

∑
r∈N κ(`, r) ≤ ϕ(n, t)

ϕ(n, t) is a linear term with variables n and t
κ(`, r) counts the number of process visits to location ` in round r

Expressivity of HSCL
• Agreement := ∀r .κ(d0, r) ≤ 0 ∨ ∀r .κ(d1, r) ≤ 0
• Validity := ∀r .κ(d0, r) ≤ 0 (assuming all start with v = 1)
• Termination := ¬(

∑
r κ(d0, r) + κ(d1, r) ≤ Nc − 1)

• RestrictedTermination := ¬(
∑

r κ(d0, r) + κ(d1, r) ≤ 0) −→
Term

• LeaderUniqueness := ∀r .κ(ldr, r) ≤ 1
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Overview of reductions (1)

• Step 1: received message abstraction
• only sent messages are kept in the network state
• local counters for received messages are abstracted away
• similar in spirit to e.g. [Stoilkovska, Konnov, Widder, Zuleger 2020]
• always sound, and also complete for common templates

within a round subsequent guards are monotone
e.g. m0 ≥ n/3 cannot follow m0 ≥ n/2

• Step 2: process identity abstraction
• process ids are irrelevant, only number of processes in each location

and round matter
• classical counting abstraction from parameterized verification of

systems composed of identical anonymous processes [German, Sistla
1992]
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Overview of reductions (2)

• Step 3: synchronous restriction
• re-ordering to focus on ”semi-synchronous” executions

the sequence of target round indices is non-decreasing
• commutativity arguments [Chaouch-Saad, Charron-Bost, Merz 2009]

• Step 4: bounded-window abstraction
• counters that no longer influence updates can be forgotten
• window of size b + 1 suffices, with b bound on round increment in

template
• sliding window can be encoded with finitely many counters

For common templates, these four steps are sound and complete for
history state-count properties.
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From HSCL to LTL

Two more transformation steps on models: history-record extension and
round identify abstraction

→ allows to reduce HSCL verification to LTL model checking

• Agreement := G
(
local(d0) ≤ 0 ∨ local(d1) ≤ 0

)
• Validity := G

(
local(d0) ≤ 0

)
• Termination := ¬G

(
cumul(d0) + cumul(d1) ≤ Nc

)
• RestrictedTermination := G

(
cumul(d0) + cumul(d1) ≤ 0

)
−→

Termination

• LeaderUniqueness := G
(
local(ldr) ≤ 1

)
Parameterized verification of HSCL on round-based distributed
algorithms reduces to LTL model checking on finite-counter systems

Rk: for fixed parameters, reduction to LTL over finite-state systems
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Experimental validation

Case studies to demonstrate applicability of the approach
• .smv file with counter system and LTL properties
• IC3 engine of nuXmv: check ltlspec ic3

3 consensus algorithms with round increment of at most 1
Protocol loc. rules rc Agree. Valid. Term. R. Term.
Ben-Or (crash) 9 26 n > 2t 1.4s (13) 0.4s (9) 0.5 (3) 3.1s (8)
Ben-Or (Byz.) 10 27 n > 5t 7.0s (11) 1.2s (7) 0.6 (3) 4.3s (7)
Bracha (Byz.) 12 31 n > 3t 14.0s (14) 1.8s (8) 0.7 (3) 6.5s (11)

1 leader election protocol with round increment of at most 2
Protocol b loc. rules rc Leader U.
Raft leader election 2 11 25 n > 2t 1.8s (8)

Additional tests: bugged variants (altered guards or resilience condition)
detected within seconds; also verification of fixed parameter valuations
(thus finite-state model checking)
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Conclusion and future work

Contribution
• verification of correctness properties of round-based distributed

algorithms
• reduction theorems to encode it into LTL verification over

finite-counter system
• experiments conducted with symbolic model checker nuXmv

Remaining challenges
• how to model and verify probabilistic behaviors?
• how to deal with unbounded round jumps?
• how to deal with algorithms in which the number of locations per

round grows with round index?

Vielen Dank für Ihre Aufmerksamkeit!
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