
Proving Linearizability of
Fault-Tolerant Register Protocols

Dependency Graph Approach

Gregory Chockler
University of Surrey

Alexey Gotsman (IMDEA), Sadegh Keshavarzi (U of Surrey),
Alejandro Naser-Pastoriza (IMDEA)

Fault-Tolerant Register Protocols

write(v)

read

• Asynchronous message-
passing system

• Fail-prone servers (replicas)

• Fail-prone clients interact
with replicas to implement a
R/W register abstraction

• Registers model key storage functionality

‣ Sharing memory robustly in message-passing
systems, Attiya, Bar-Noy, Dolev, JACM’95

Important Abstraction

[ABD95]

[1995-]

[DISC’25]

1000+
papers

• New methodology for proving linearizability of  
multi-writer/multi-reader (MWMR) register
implementations

‣ Register implementation is linearizable IFF

 histories of read/write invocations and responses,

 permutation of (linearization) that complies with:

(1) Real-time order of non-overlapping invocations in , and

(2) Every read returns a value written by last preceding write

∀ σ
∃ σ

σ

This Talk

• We have recently been working on MW register
implementations extending ABD for new failure models

‣ [Naser-Pastoriza, C, Gotsman, OPODIS’23, PODC’25],

[Keshavarzi, C, Gotsman, DISC’25]

• We were looking for proof techniques to establish their
linearizability

• Unexpectedly, this turned out to be a stumbling block…

Motivation

• Textbook techniques do not work

‣ Linearization point arguments

‣ Forward simulations towards an atomic object

• “…there are no strongly-linearizable fault-tolerant
message-passing implementations of multi-writer
registers, max-registers, snapshots or counters”
[Attiya, Enea, Welch, DISC’21]

It ain’t easy…

• Find a partial order on the invocations and prove it
satisfies certain properties

‣ [Lemma 13.16, Lynch’96], [Lynch & Shvartsman, DISC’02]

• Still not easy to use

‣ Some properties cannot be proven before partial order is found

‣ Assumes all invocations are complete

It ain’t easy…

It ain’t easy…

• Capture partial order of [Lemma 13.16, Lynch’96] as an
abstract automaton (PO Machine)

‣ [C, Lynch, Mitra, Tauber, DISC’05]

• Prove MWMR ABD by forward simulation towards PO
Machine

• Simulation relation turned out to be difficult to customise
for more advanced register implementations

• Flip the partial order approach on its head!

(1) Express operation dependencies in terms of four
standard binary relations from weak memory
literature

(2) Prove that the union of these relations  
(dependency graph) is a acyclic

• A simple and elegant linearizability proof of multi-writer/
multi-reader (MWMR) ABD protocol: “proof pearl”

Our Approach
Happens-before, coherence,

reads-from, from-read

Inspired by prior work on

• Early work on weak memory

‣ [Shasha & Snir, ACM TOPLAS 1988]

• Transaction isolation specifications

‣ [Adya’s PhD thesis, 1999]

• Aspect-oriented linearizability proofs in shared memory

‣ [Henzinger et al., CONCUR’13], [Dodds et al., POPL’15],

[Domínguez & Nanevski, CONCUR’23]

• Transactional memory

‣ [Khyzha, Attiya, Gotsman, Rinetzky, PPoPP’18]

Our Approach

Dependency Graph

• Real-Time (rt)

• Write-Write (ww)

• Write-Read (wr) 
(“reads-from”)

Union of four relations for a given execution σ

 completes before is
invoked in

: is a total order on the writes in

read returns the
value written by write

𝗋𝗍(a, b) ⟺ a b
σ

𝗐𝗐 σ

𝗐𝗋(w, r) ⟺ r
w

𝗐𝗋(w, r) ∧ 𝗐𝗋(w′￼, r) ⟹ w = w′￼

(Assume first event in is write())σ v0

Dependency Graph

• Read-Write (rw) 
(“from-read”)

Union of four relations for a given execution σ

read reads-from a
write preceding in
𝗋𝗐(r, w) ⟺ r

w 𝗐𝗐

(Assume first event in is write())σ v0

W2W1 W3 W4 …𝗐𝗐 𝗐𝗐 𝗐𝗐 𝗐𝗐

R

𝗐𝗋 𝗋𝗐 𝗋𝗐 𝗋𝗐

Dependency Graph

W2

W1

W3

R1

Dependency Graph

W2

W1

W3

R1

𝗐𝗋

𝗋𝗐

Dependency Graph

W2

W1

W3

R1

𝗐𝗋

𝗋𝗐

Cannot fix the cycle — not linearizable!

Dependency Graph

W2

W1

W3

𝗐𝗋

𝗋𝗐

No cycles — linearizable!

R1

Dependency Graph

W2

W1

W3

R1

R2

Dependency Graph

W2

W1

W3

R1

R2

𝗐𝗋

Dependency Graph

W2

W1

W3

R1

R2

𝗐𝗋

𝗐𝗋

𝗋𝗐

Dependency Graph

W2

W1

W3

R1

R2

𝗐𝗋

𝗐𝗋

𝗋𝗐

Not needed for
regularity

Dependency Graph

W2

W1

W3

R1

R2

𝗐𝗋

𝗐𝗋

𝗋𝗐

Regular

Linearizability Theorem

• An execution is linearizable IFF , , , such
that the graph () is acyclic

• An execution is regular IFF , , , such
that the graph () is acyclic

‣ : is a restriction of excluding read-read pairs

∃ 𝗋𝗍 𝗐𝗐 𝗐𝗋 𝗋𝗐
𝗋𝗍 ∪ 𝗐𝗐 ∪ 𝗐𝗋 ∪ 𝗋𝗐

∃ 𝗋𝗍− 𝗐𝗐 𝗐𝗋 𝗋𝗐
𝗋𝗍 ∪ 𝗐𝗐 ∪ 𝗐𝗋 ∪ 𝗋𝗐

𝗋𝗍− 𝗋𝗍

Proof: If

W2

W1

W3

R1

R2

𝗐𝗋

𝗐𝗋

𝗋𝗐

R3

𝗐𝗋

Acyclic dependency graph

Proof: If

W2

W1

W3

R1

R2

𝗐𝗋

𝗐𝗋

𝗋𝗐

R3

𝗐𝗋

Acyclic dependency graph induces a partial order

Proof: If

W2W1 W3

R1

R2

R3

Acyclic dependency graph induces a partial order

Proof: If

W2W1 W3

R1

R2

R3

…that can be extended into a total order

Proof: If

W2W1 W3

R1

R2

R3

…that can be extended into a total order

Proof: If

W2W1 W3

R1

R2

…which is a linearization

R3

• replicas, can crash

• Read/write quorum system

‣ ,

‣

‣ Some are available in every execution

n ≥ 2f + 1 f

ℛ = {Q ⊆ P : |Q | = f + 1} 𝒲 = {Q ⊆ P : |Q | = n − f}

∀Qr ∈ ℛ . ∀Qw ∈ 𝒲 . Qr ∩ QW ≠ ∅

Qr ∈ ℛ, Qw ∈ 𝒲

MWMR ABD

MWMR ABD: Client qi
:

𝖶𝗋𝗂𝗍𝖾(v)
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂)

c ← max{c′￼i | (c′￼i, _) ∈ S}

ts ← (c + 1, i)

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

:

Let be such that  

return

𝖱𝖾𝖺𝖽
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕)

(ts, v) (ts, v) ∈ S ∧
ts = max{ts′￼ | (ts′￼, _) ∈ S)}

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

v

:

send to

Wait until received

𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(req)
𝖶𝖱𝖨𝖳𝖤 (req) P

{𝖶𝖱𝖨𝖳𝖤_𝖠𝖢𝖪(𝗃) | pj ∈ Q} ∧ Q ∈ 𝒲

:

send to

Wait until received

return

𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(req)
𝖱𝖤𝖠𝖣 (req) P

{𝖱𝖤𝖠𝖣_𝖠𝖢𝖪(𝗋𝗃, 𝗃) | pj ∈ Q} ∧ Q ∈ ℛ
{rj | pj ∈ Q}

MWMR ABD: Replica pi

On from

if then

send to

𝖶𝖱𝖨𝖳𝖤 (𝚃𝚂𝚅𝚊𝚕(ts, v)) qj

ts > 𝗍𝗌

(𝗍𝗌, 𝗏𝖺𝗅) ← (ts, v)

𝖶𝖱𝖨𝖳𝖤_𝖠𝖢𝖪(i) qj

On from

case do

send to

𝖱𝖤𝖠𝖣 (req) qj

r ← req
𝚃𝚂 : 𝗍𝗌
𝚃𝚂𝚅𝚊𝚕 : (𝗍𝗌, 𝗏𝖺𝗅)

𝖱𝖤𝖠𝖣_𝖠𝖢𝖪(r, i) qj

MWMR ABD is Linearizable
:

𝖶𝗋𝗂𝗍𝖾(v)
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂)

c ← max{c′￼i | (c′￼i, _) ∈ S}

ts ← (c + 1, i)

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

:

Let (,) be such that  

return

𝖱𝖾𝖺𝖽
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕)

ts v (ts, v) ∈ S ∧
ts = max{ts′￼ | (ts′￼, _) ∈ S)}

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

v

Timestamp of a
write invocation Timestamp of a

read invocation

: (read/write invocations) TS → ℕ≥0

•

‣ Timestamp uniqueness is a total order

•

‣ Every read returns the value with timestamp
written by a write such that

(W, W′￼) ∈ 𝗐𝗐 ⟺ TS(W) < TS(W′￼)

⟹ 𝗐𝗐

(W, R) ∈ 𝗐𝗋 ⟺ TS(R) = TS(W)

R TS(R)
W TS(W) = TS(R)

MWMR ABD is Linearizable

•

‣

• By quorum intersection, update rule, write-back:

‣

‣

(R, W) ∈ 𝗋𝗐 ⟺ TS(R) < TS(W)

(R, W) ∈ 𝗋𝗐 ⟺ ∃W′￼. (W′￼, R) ∈ 𝗐𝗋 ∧ (W′￼, W) ∈ 𝗐𝗐
⟺ TS(R) = TS(W′￼) < TS(W)

(x, W) ∈ 𝗋𝗍 ⟺ TS(x) < TS(W)

(x, R) ∈ 𝗋𝗍 ⟺ TS(x) ≤ TS(R)

MWMR ABD is Linearizable

• : an execution of MWMR ABD

• : a dependency graph for constructed as above

• Suppose that has a cycle

• Then, only includes reads

σ

G σ

G C

C

MWMR ABD is Linearizable

• Then, only includes readsC

MWMR ABD is Linearizable

W

x

TS(W) > TS(x)

TS(x) ≥ TS(W)

TS(x) > TS(x)

W

x

𝗐𝗐 W

x

𝗋𝗐 W

x

𝗋𝗍

• Then, only includes reads

• Then, all edges in are edges

C

C 𝗋𝗍

MWMR ABD is Linearizable

R

R’

𝗋𝗍
𝗋𝗍

𝗋𝗍 R’’

R has started after R
has finished

• : an execution of MWMR ABD

• : a dependency graph for constructed as above

• Suppose that has a cycle

• Then, only includes read vertices and edges

• Then, some read starts after it finishes. A contradiction.

• is acyclic

• is linearizable

σ

G σ

G C

C 𝗋𝗍

G

σ

MWMR ABD is Linearizable

• Proof pearl of linearizability for message-passing
implementations of MWMR registers

• Easy generalisation for incomplete operations via visibility
predicate

‣ [Khyzha et al., PPoPP’18], [Keshavarzi, C, Gotsman, DISC’25]

• Linearizability theorem was proven for infinite executions

• Challenge for automated verification

‣ Need to reason about whole traces, rather than inductively

Conclusions

