Proving Linearizability of
Fault-Tolerant Register Protocols

Dependency Graph Approach

Gregory Chockler
University of Surrey

Alexey Gotsman (IMDEA), Sadegh Keshavarzi (U of Surrey),
Alejandro Naser-Pastoriza (IMDEA)

Fault-Tolerant Register Protocols

read

L] e Asynchronous message-
passing system

e Fail-prone servers (replicas)

e Fail-prone clients interact
with replicas to implement a
R/W register abstraction

write(v)

Important Abstraction

* Registers model key storage functionality

> Sharing memory robustly in message-passing
systems, Attiya, Bar-Noy, Dolev, JACM’95

self-stabilising e

crash-recovery ...

reconftigurable [1995-]
papers

erasure-coded Crash

fast-path ™
faulty links

[DISC'25]

Byzantine

This Talk

* New methodology for proving linearizability of
multi-writer/multi-reader (MWMR) register
Implementations

> Register implementation is linearizable IFF
V histories o of read/write invocations and responses,
3 permutation of o (linearization) that complies with:

(1) Real-time order of non-overlapping invocations in ¢, and

(2) Every read returns a value written by last preceding write

Motivation

* We have recently been working on MW register
Implementations extending ABD for new failure models

> [Naser-Pastoriza, C, Gotsman, OPODIS'23, PODC'25],
[Keshavarzi, C, Gotsman, DISC'25]

* We were looking for proof techniques to establish their
linearizability

* Unexpectedly, this turned out to be a stumbling block...

It ain’t easy...

e Textbook techniques do not work

> Linearization point arguments

> Forward simulations towards an atomic object

e “...there are no strongly-linearizable fault-tolerant
message-passing implementations of multi-writer
registers, max-registers, snapshots or counters”
[Attiya, Enea, Welch, DISC'21]

It ain’t easy...

Find a partial order on the invocations and prove it
satisfies certain properties

> [Lemma 13.16, Lynch'96], [Lynch & Shvartsman, DISC'02]

Still not easy to use

» Some properties cannot be proven before partial order is found
> Assumes all invocations are complete

It ain’t easy...

e Capture partial order of [Lemma 13.16, Lynch'96] as an
abstract automaton (PO Machine)

> [C, Lynch, Mitra, Tauber, DISC'05]

* Prove MWMR ABD by forward simulation towards PO
Machine

e Simulation relation turned out to be difficult to customise
for more advanced register implementations

Our Approach

Happens-before, coherence,

reads-from, from-read

* Flip the partial order approach on its head!

(1) Express operation dependencies in terms of four
standard binary relations from weak memory
literature

(2) Prove that the union of these relations
(dependency graph) is a acyclic

A simple and elegant linearizability proof of multi-writer/
multi-reader (MWMR) ABD protocol: “proof pearl”

Our Approach

Inspired by prior work on

Early work on weak memory
> [Shasha & Snir, ACM TOPLAS 1988]

e Transaction isolation specifications
> [Adya's PhD thesis, 1999]

e Aspect-oriented linearizability proofs in shared memory

> [Henzinger et al., CONCUR'13], [Dodds et al., POPL'15],
[Dominguez & Nanevski, CONCUR'23]

e Transactional memory
> [Khyzha, Attiya, Gotsman, Rinetzky, PPoPP'18]

Dependency Graph

Union of four relations for a given execution o
(Assume first event in o is write(v,))

e Real-Time (rt)

e Write-Write (ww)

* Write-Read (wr)
(“reads-from”)

rt(a, b) <= a completes before b is
iInvoked in ¢

WW: IS a total order on the writes in o

wr(w, r) < read r returns the
value written by write w

wr(w,r) Awr(w',r) = w=w’

Dependency Graph

Union of four relations for a given execution o
(Assume first event in o is write(v,))

rw(r,w) < reads-from a
(“from-read”) write in wWw

WwWWwW wWWwW

Sy Wg ey W/ ooy o

Dependency Graph

Dependency Graph

Dependency Graph

Cannot fix the cycle — not linearizable!

Dependency Graph

No cycles — linearizable!

Dependency Graph

Dependency Graph

Dependency Graph

Dependency Graph

Not needed for
regularity

Dependency Graph

v/

Regular

Linearizability Theorem

e An execution is linearizable IFF 4 rt, ww, wr, rw such
that the graph (rt U ww U wr U rw) is acyclic

e An execution is reqular IFF 3 rt™, ww, wr, rw such
that the graph (rt U ww U wr U rw) is acyclic

> rt:is arestriction of rt excluding read-read pairs

Proof: If

Acyclic dependency graph

Proof: If

Acyclic dependency graph induces a partial order

Proof: If

Acyclic dependency graph induces a partial order

Proof: If

..tThat can be extended into a total order

Proof: If

..tThat can be extended into a total order

Proof: If

..which is a linearization

MWMR ABD

e n > 2f+ 1 replicas, fcan crash

e Read/write quorum system
» R={QCP : |Q|=f+1},7={QCP : |Q|=n—f}
» VO.ER.NQ,EW.Q0.NOy #* D

» Some Q, € R, O, € W are available in every execution

MWMR ABD: Client g;

Write(v): Read:
S « read_quorum(TS) S < read_quorum(TSVal)
c < max{c; | (c¢/,_) € S} Let (¢s, V) be such that (zs,v) € S A
is — (c+ 1, i) ts = max{ts’' | (ts’,_) € 5)}
S « write_quorum(TSVal(ts, v)) S « write_quorum(TSVal(zs, v))
return v
write_quorum(req): read_quorum(req):
send WRITE (req) to P send READ (req) to P
Wait until received Wait until received
{WRITE_ACK()) | p; € Q} AQ €W {READ_ACK(r,j) | p, € O} AQ € R

return {r; | p; € O}

MWMR ABD: Replica p,

On READ (req) from q;

On WRITE (TSVal(zs, v)) from g;)
r < case req do

TS : ts
(ts, val) « (zs,v) TSVal : (ts, val)
send WRITE_ACK() to q; send READ_ACK(r, i) to g;

if s > ts then

MWMR ABD is Linearizable

Write(v):
S « read_quorum(TS)

c < max{c; | (c;,_) € S}
ts — (c+ 1, 1)

- write_quorum(TSVal(zs, v))

Timestamp of a
write vocakion

Read:
S < read_quorum(TSVal)

Let (75, v) be such that (z5,v) € § A
t5%= max{ts' | (ts’,) € S)}

S « we_quorum(TSVal(fS, V)

return v

Times& of a
read thvocakion

TS: (read/write invocations) — N=U

MWMR ABD is Linearizable

e (W,W)eww < TS(W) < TS(W)
> Timestamp uniqgueness = WwWw is a total order
e (W,R) e wr <= TS(R)=TS(W)

> Every read R returns the value with timestamp T.S(R)
written by a write W such that TS(W) = TS(R)

MWMR ABD is Linearizable

e (RW)yerw < TSR) <TS(W)

» RRW)yerw < AW . (W ,R) e wrA (W, W) € ww
<~ TS(R) =TS(W) < TS(W)

* By quorum intersection, update rule, write-back:
> x,W)yert < TS5x) <TS(W)

» xR ert < TS(x) <TS(R)

MWMR ABD is Linearizable

e ¢ an execution of MWMR ABD
e (G: a dependency graph for o constructed as above
e Suppose that G has a cycle C

e Then, C only includes reads

MWMR ABD is Linearizable

e Then, C only includes reads

TS(x)> TS(W) [)
Y

X

/ " \Tj\ TS(x) > TS(x)
) X

wwfawg rwfz;.wg rt/;w ’

X X , X /

TS(W) > TS(x)

MWMR ABD is Linearizable

e Then, C only includes reads
e Then, all edges in C are rt edges
rt/"> R | R has started after R
*)rt has finished
(e

R’

MWMR ABD is Linearizable

o. an execution of MWMR ABD
G: a dependency graph for ¢ constructed as above
Suppose that G has a cycle C

Then, C only includes read vertices and rt edges

Then, some read starts after it finishes. A contradiction.
G is acyclic

o IS linearizable

Conclusions

Proof pearl of linearizability for message-passing
implementations of MWMR registers

Easy generalisation for incomplete operations via visibility
predicate

> [Khyzha et al., PPoPP'18], [Keshavarzi, C, Gotsman, DISC'25]
Linearizability theorem was proven for infinite executions

Challenge for automated verification

> Need to reason about whole traces, rather than inductively

