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Fault-Tolerant Register Protocols

write(v)

read

• Asynchronous message-
passing system


• Fail-prone servers (replicas)


• Fail-prone clients interact 
with replicas to implement a 
R/W register abstraction



• Registers model key storage functionality


‣ Sharing memory robustly in message-passing  
systems, Attiya, Bar-Noy, Dolev, JACM’95

Important Abstraction

[ABD95]

[1995-]

[DISC’25]

1000+  
papers



• New methodology for proving linearizability of  
multi-writer/multi-reader (MWMR) register 
implementations


‣ Register implementation is linearizable IFF

 histories  of read/write invocations and responses, 

 permutation of  (linearization) that complies with:


(1) Real-time order of non-overlapping invocations in , and


(2) Every read returns a value written by last preceding write

∀ σ
∃ σ

σ

This Talk



• We have recently been working on MW register 
implementations extending ABD for new failure models

‣ [Naser-Pastoriza, C, Gotsman, OPODIS’23, PODC’25],  

[Keshavarzi, C, Gotsman, DISC’25] 

• We were looking for proof techniques to establish their 
linearizability


• Unexpectedly, this turned out to be a stumbling block…

Motivation



• Textbook techniques do not work


‣ Linearization point arguments 


‣ Forward simulations towards an atomic object


• “…there are no strongly-linearizable fault-tolerant 
message-passing implementations of multi-writer 
registers, max-registers, snapshots or counters” 
[Attiya, Enea, Welch, DISC’21]

It ain’t easy…



• Find a partial order on the invocations and prove it 
satisfies certain properties

‣ [Lemma 13.16, Lynch’96], [Lynch & Shvartsman, DISC’02] 

• Still not easy to use

‣ Some properties cannot be proven before partial order is found

‣ Assumes all invocations are complete

It ain’t easy…



It ain’t easy…

• Capture partial order of [Lemma 13.16, Lynch’96] as an 
abstract automaton (PO Machine)


‣ [C, Lynch, Mitra, Tauber, DISC’05] 

• Prove MWMR ABD by forward simulation towards PO 
Machine


• Simulation relation turned out to be difficult to customise 
for more advanced register implementations



• Flip the partial order approach on its head!


(1) Express operation dependencies in terms of four 
standard binary relations from weak memory 
literature


(2) Prove that the union of these relations  
(dependency graph) is a acyclic


• A simple and elegant linearizability proof of multi-writer/
multi-reader (MWMR) ABD protocol: “proof pearl”

Our Approach
Happens-before, coherence, 

reads-from, from-read



Inspired by prior work on


• Early work on weak memory

‣ [Shasha & Snir, ACM TOPLAS 1988] 

• Transaction isolation specifications

‣ [Adya’s PhD thesis, 1999] 

• Aspect-oriented linearizability proofs in shared memory 

‣ [Henzinger et al., CONCUR’13], [Dodds et al., POPL’15], 

[Domínguez & Nanevski, CONCUR’23] 

• Transactional memory

‣ [Khyzha, Attiya, Gotsman, Rinetzky, PPoPP’18]

Our Approach



Dependency Graph

• Real-Time (rt)


• Write-Write (ww)


• Write-Read (wr) 
(“reads-from”)


Union of four relations for a given execution σ

   completes before  is 
invoked in 


: is a total order on the writes in 


read  returns the 
value written by write 


𝗋𝗍(a, b) ⟺ a b
σ

𝗐𝗐 σ

𝗐𝗋(w, r) ⟺ r
w

𝗐𝗋(w, r) ∧ 𝗐𝗋(w′￼, r) ⟹ w = w′￼

(Assume first event in  is write( ))σ v0



Dependency Graph

• Read-Write (rw) 
(“from-read”)

Union of four relations for a given execution σ

read  reads-from a 
write preceding  in 
𝗋𝗐(r, w) ⟺ r

w 𝗐𝗐

(Assume first event in  is write( ))σ v0

W2W1 W3 W4 …𝗐𝗐 𝗐𝗐 𝗐𝗐 𝗐𝗐

R

𝗐𝗋 𝗋𝗐 𝗋𝗐 𝗋𝗐



Dependency Graph
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Dependency Graph
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Dependency Graph
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R1

𝗐𝗋

𝗋𝗐

Cannot fix the cycle — not linearizable!



Dependency Graph

W2

W1

W3

𝗐𝗋

𝗋𝗐

No cycles — linearizable!

R1



Dependency Graph
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Dependency Graph
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Not needed for 
regularity



Dependency Graph
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Linearizability Theorem

• An execution is linearizable IFF  , , ,  such 
that the graph (       ) is acyclic 

• An execution is regular IFF  , , ,  such 
that the graph (       ) is acyclic 

‣ : is a restriction of  excluding read-read pairs

∃ 𝗋𝗍 𝗐𝗐 𝗐𝗋 𝗋𝗐
𝗋𝗍 ∪ 𝗐𝗐 ∪ 𝗐𝗋 ∪ 𝗋𝗐

∃ 𝗋𝗍− 𝗐𝗐 𝗐𝗋 𝗋𝗐
𝗋𝗍 ∪ 𝗐𝗐 ∪ 𝗐𝗋 ∪ 𝗋𝗐

𝗋𝗍− 𝗋𝗍



Proof: If
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Acyclic dependency graph



Proof: If
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Acyclic dependency graph induces a partial order



Proof: If

W2W1 W3

R1

R2

R3

Acyclic dependency graph induces a partial order



Proof: If

W2W1 W3
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…that can be extended into a total order



Proof: If

W2W1 W3

R1

R2

R3

…that can be extended into a total order



Proof: If

W2W1 W3

R1

R2

…which is a linearization

R3



•  replicas,   can crash


• Read/write quorum system


‣ , 


‣ 


‣ Some  are available in every execution

n ≥ 2f + 1 f

ℛ = {Q ⊆ P : |Q | = f + 1} 𝒲 = {Q ⊆ P : |Q | = n − f}

∀Qr ∈ ℛ . ∀Qw ∈ 𝒲 . Qr ∩ QW ≠ ∅

Qr ∈ ℛ, Qw ∈ 𝒲

MWMR ABD



MWMR ABD: Client qi
:











𝖶𝗋𝗂𝗍𝖾(v)
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂)

c ← max{c′￼i | (c′￼i, _) ∈ S}

ts ← (c + 1, i)

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

:




Let  be such that  
      





return  

𝖱𝖾𝖺𝖽
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕)

(ts, v) (ts, v) ∈ S ∧
ts = max{ts′￼ | (ts′￼, _) ∈ S)}

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

v

:


send   to 


Wait until received

 


𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(req)
𝖶𝖱𝖨𝖳𝖤 (req) P

{𝖶𝖱𝖨𝖳𝖤_𝖠𝖢𝖪( 𝗃) | pj ∈ Q} ∧ Q ∈ 𝒲

:


send   to 

Wait until received 





return  

𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(req)
𝖱𝖤𝖠𝖣 (req) P

{𝖱𝖤𝖠𝖣_𝖠𝖢𝖪(𝗋𝗃, 𝗃) | pj ∈ Q} ∧ Q ∈ ℛ
{rj | pj ∈ Q}



MWMR ABD: Replica pi

On  from 


if  then





send  to 

𝖶𝖱𝖨𝖳𝖤 (𝚃𝚂𝚅𝚊𝚕(ts, v)) qj

ts > 𝗍𝗌

(𝗍𝗌, 𝗏𝖺𝗅) ← (ts, v)

𝖶𝖱𝖨𝖳𝖤_𝖠𝖢𝖪(i) qj

On  from 


case  do








send  to 

𝖱𝖤𝖠𝖣 (req) qj

r ← req
𝚃𝚂 : 𝗍𝗌
𝚃𝚂𝚅𝚊𝚕 : (𝗍𝗌, 𝗏𝖺𝗅)

𝖱𝖤𝖠𝖣_𝖠𝖢𝖪(r, i) qj



MWMR ABD is Linearizable
:











𝖶𝗋𝗂𝗍𝖾(v)
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂)

c ← max{c′￼i | (c′￼i, _) ∈ S}

ts ← (c + 1, i)

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

:




Let ( , ) be such that  
      





return  

𝖱𝖾𝖺𝖽
S ← 𝗋𝖾𝖺𝖽_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕)

ts v (ts, v) ∈ S ∧
ts = max{ts′￼ | (ts′￼, _) ∈ S)}

S ← 𝗐𝗋𝗂𝗍𝖾_𝗊𝗎𝗈𝗋𝗎𝗆(𝚃𝚂𝚅𝚊𝚕(ts, v))

v

Timestamp of a  
write invocation Timestamp of a  

read invocation

: (read/write invocations)    TS → ℕ≥0



• 


‣ Timestamp uniqueness  is a total order 

•    

‣ Every read  returns the value with timestamp 
written by a write  such that 

(W, W′￼) ∈ 𝗐𝗐 ⟺ TS(W) < TS(W′￼)

⟹ 𝗐𝗐

(W, R) ∈ 𝗐𝗋 ⟺ TS(R) = TS(W)

R TS(R)
W TS(W ) = TS(R)

MWMR ABD is Linearizable



•  

‣   
 

• By quorum intersection, update rule, write-back: 

‣  

‣

(R, W) ∈ 𝗋𝗐 ⟺ TS(R) < TS(W)

(R, W ) ∈ 𝗋𝗐 ⟺ ∃W′￼. (W′￼, R) ∈ 𝗐𝗋 ∧ (W′￼, W ) ∈ 𝗐𝗐
⟺ TS(R) = TS(W′￼) < TS(W )

(x, W ) ∈ 𝗋𝗍 ⟺ TS(x) < TS(W )

(x, R) ∈ 𝗋𝗍 ⟺ TS(x) ≤ TS(R)

MWMR ABD is Linearizable



• : an execution of MWMR ABD


• : a dependency graph for  constructed as above


• Suppose that  has a cycle 


• Then,  only includes reads

σ

G σ

G C

C

MWMR ABD is Linearizable



• Then,  only includes readsC

MWMR ABD is Linearizable

W

x

TS(W) > TS(x)

TS(x) ≥ TS(W)

TS(x) > TS(x)

W

x

𝗐𝗐 W

x

𝗋𝗐 W

x

𝗋𝗍



• Then,  only includes reads


• Then, all edges in  are  edges

C

C 𝗋𝗍

MWMR ABD is Linearizable

R

R’

𝗋𝗍
𝗋𝗍

𝗋𝗍 R’’

R has started after R 
has finished



• : an execution of MWMR ABD


• : a dependency graph for  constructed as above


• Suppose that  has a cycle 


• Then,  only includes read vertices and  edges


• Then, some read starts after it finishes. A contradiction.


•  is acyclic


•  is linearizable

σ

G σ

G C

C 𝗋𝗍

G

σ

MWMR ABD is Linearizable



• Proof pearl of linearizability for message-passing 
implementations of MWMR registers


• Easy generalisation for incomplete operations via visibility 
predicate


‣ [Khyzha et al., PPoPP’18], [Keshavarzi, C, Gotsman, DISC’25] 

• Linearizability theorem was proven for infinite executions


• Challenge for automated verification

‣ Need to reason about whole traces, rather than inductively 

Conclusions


